
F3 Faculty of Electrical Engineering
Department of Computer Science

Bachelor’s Thesis

Team Collab
Enhancing the Creation and Collaboration of Team Projects

Hà Trang Phanová
Software Engineering and Technology

May 2023
Supervisor: Ing. Petr Aubrecht, Ph.D





ZADÁNÍ BAKALÁŘSKÉ PRÁCE​

I. OSOBNÍ A STUDIJNÍ ÚDAJE 

492219 Osobní číslo:​Há Trang Jméno:​Phanová Příjmení:​

Fakulta elektrotechnická Fakulta/ústav:​

Zadávající katedra/ústav:    Katedra počítačů 

Softwarové inženýrství a technologie Studijní program:​

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI 

Název bakalářské práce:​

Team Collab  

Název bakalářské práce anglicky:​

Team Collab  

Pokyny pro vypracování:​
Semestrální práce se často dělají ve dvojicích, případně větších týmech. Nicméně na technických školách bývá problém​
domluva mezi studenty. Navrhovaný systém by měl poskytnout studentům prostředí, kde by mohli rychle a snadno najít​
kolegy do týmu. Systém by měl umožňovat i skládání heterogenních týmů, kdy je možné specifikovat, kolik lidí je třeba a​
jaké mají mít schopnosti (znalost nějaké domény, programovacího jazyka, technologie, množství volného času).​
Každý projekt mi svůj vlastní popis a specifikace (čeho se týká - např. předmět, v čem je implementován ap.) a podle​
těchto kritérií by měl být vyhledatelný.​
Do budoucna by takový systém mohl sloužit např. opensourcovým projektům při hledání dobrovolníků a na druhou stranu​
začátečníkům v programování, kde si mohou vyzkoušet technologie podle svého zájmu.​
Požadavky:​
1. Zanalyzujte a popište aktuální stav software pro organizaci týmů.​
2. Implementujte webovou aplikaci podle zadání. Myslete na User Experience jak z pohledu zájemce o spolupráci, tak z​
pohledu správce týmu. Součástí by měla být i nějaká statistika ukazující, v jakém stavu jsou jednotlivé oblasti, např. kolik​
týmů hledá partnera pro předmět EAR.​
3. Implementaci vyzkoušejte z uživatelského hlediska - projděte kompletní lifecycle projektu – od registrace uživatelů,​
založení projektu, domluvě, až po finální ukončení projektu. Unit testy zkuste aspoň pro lifecycle projektu. Otestujte REST​
rozhraní.​
4. Řešení implementujte v technologii JakartaEE. Technologie na uživatelské rozhraní je na vůli studenta, musí ji odůvodnit.​

Seznam doporučené literatury:​
[1] The Jakarta EE 8 Tutorial: https://eclipse-ee4j.github.io/jakartaee-tutorial/​
[2] Jakarta EE Cookbook - Second Edition, https://www.packtpub.com/programming/jakarta-ee-cookbook-second-edition​
[3] Patterns of Enterprise Application Architecture — Martin Fowler​

Jméno a pracoviště vedoucí(ho) bakalářské práce:​

Ing. Petr Aubrecht, Ph.D.     katedra počítačů   FEL 

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:​

   

Termín odevzdání bakalářské práce:   26.05.2023 Datum zadání bakalářské práce:   10.02.2023 

Platnost zadání bakalářské práce:   22.09.2024 

___________________________​___________________________​___________________________​
prof. Mgr. Petr Páta, Ph.D.​

podpis děkana(ky)​
podpis vedoucí(ho) ústavu/katedry​Ing. Petr Aubrecht, Ph.D.​

podpis vedoucí(ho) práce​

© ČVUT v Praze, Design: ČVUT v Praze, VIC Strana 1 z 2 CVUT-CZ-ZBP-2015.1 





Acknowledgement / Declaration

I would like to thank my supervisor,
Ing. Petr Aubrecht, Ph.D., for his
guidance, valuable advice, and ex-
pertise. Without his encouragement,
this project would have probably never
come to life.

My sincerest thanks also belong
to my family and friends, who have
given me great support throughout the
whole journey of writing this thesis.
I would not be here without them.

Last but not least, I would like to
thank my former teammates and class-
mates for their help in making this
project what it is today.

I hereby declare that the presented
thesis is my own work and that I have
cited all sources of information in accor-
dance with the Guideline for adhering
to ethical principles when elaborating an
academic final thesis.

I acknowledge that my thesis is sub-
ject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll.,
the Copyright Act, as amended, in par-
ticular that the Czech Technical Univer-
sity in Prague has the right to conclude
a license agreement on the utilization of
this thesis as school work under the pro-
visions of Article 60(1) of the Act.

In Prague May 26, 2023

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

v



Abstrakt / Abstract

Bakalářská práce se zabývá ná-
vrhem a implementací webové aplikace,
která poskytne studentům prostředí,
kde mohou efektivně najít spolupracov-
níky do skupinových projektů. Zároveň
může sloužit i jako portál pro výběr
studentů do školních klubů, akcí a mi-
moškolních aktivit.

Uživatel si může založit projekt,
na kterém by chtěl pracovat a pro
který potřebuje najít spolupracovníky
do týmu. Každý projekt bude mít svůj
popis a specifikace jaké a kolik spolu-
pracovníků zakladatel projektu hledá.
Zároveň bude možnost k projektu přidat
klíčová slova týkající se hledaných pozic
do týmu, které usnadní vyhledávání.
Ostatní uživatelé mohou do dostup-
ných projektů zasílat žádosti o přijetí
do týmu.

Klíčová slova: týmová spolupráce,
vyhledávač projektů, Jakarta EE, Web
Components, webová aplikace, Team
Collab.

Překlad titulu: Team Collab (Zlepšení
tvorby týmových projektů a její spolu-
práce)

The aim of the bachelor thesis is
to design and implement a web applica-
tion that will provide students with an
environment where they can efficiently
find collaborators for group projects.
It can also serve as a portal for select-
ing students for school clubs, events,
and extracurricular activities.

The user can establish a project that
they would like to work on and need to
find collaborators for their team. Each
project will have a description and speci-
fications of which and how many collab-
orators the project founder is seeking.
There is also an option to add the key-
words of positions the team is seeking
to make the search easier. Other users
can submit applications to the projects
to join the team.

Keywords: team collaboration,
projects finder, Jakarta EE, Web
Components, web application, Team
Collab.

vi



/ Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . 1
1.2 Application Description . . . . . 1

2 State of the Art 2
2.0.1 Target Personas . . . . . . . 2
2.0.2 Alternative Methods

and Possible Competition . . 3
3 State To Be 4

3.1 User Roles . . . . . . . . . . . . 4
3.2 Requirements . . . . . . . . . . . 4

3.2.1 Functional Requirement . . . 5
3.2.2 Non-Functional Re-

quirement . . . . . . . . . . 5
3.3 Use Cases . . . . . . . . . . . . . 5
3.4 Web Application Design . . . . . 9

3.4.1 UX Design . . . . . . . . . . 9
3.4.2 UI Design . . . . . . . . . 11

4 Architecture 14
4.1 Web Application . . . . . . . . 14

4.1.1 Front-end Technologies . . 14
4.1.2 Overall Thoughts on

Frameworks and Libraries . 15
4.1.3 Web Components . . . . . 15

4.2 Application Server . . . . . . . 16
4.2.1 Jakarta EE 8 . . . . . . . . 16
4.2.2 Payara Server . . . . . . . 16

4.3 Database . . . . . . . . . . . . 17
5 Implementation 18

5.1 Data Model . . . . . . . . . . . 18
5.2 Security . . . . . . . . . . . . . 19
5.3 REST API . . . . . . . . . . . 19
5.4 Front-End . . . . . . . . . . . . 20
5.5 Liquibase . . . . . . . . . . . . 22

6 Testing 23
6.1 Playwright Testing . . . . . . . 23
6.2 Testing Scenarios . . . . . . . . 24

7 Conclusion 26
7.1 Future Work . . . . . . . . . . 26

References 27

A Acronyms 29

vii



Tables / Figures

5.1 Code extract: GET request
for retrieving all project . . . . . . . 19

5.2 Code extract: DTO of Project . 20
5.3 Code extract: Creation of

<c-project-item> element . . . . . 20
6.1 Code extract: Running Play-

wright with Junit . . . . . . . . . . . . . . 24
6.2 Test scenario for User regis-

tration and login . . . . . . . . . . . . . . . 25
6.3 Test scenario of creating

a project . . . . . . . . . . . . . . . . . . . . . . . . 25
6.4 Test scenario for sending

and evaluating a join request . . 25

2.1 Persona cards. . . . . . . . . . . . . . . . . . . . .3
3.1 Use Cases Diagram . . . . . . . . . . . . . .6
3.2 State Diagram of Join Re-

quest . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Sitemap navigation between

screens . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Logo and Icons . . . . . . . . . . . . . . . . . 12
3.5 High-fidelity prototype

of the project browsing page. . . 12
3.6 High-fidelity prototype

of the project details . . . . . . . . . . . 13
4.1 Data from State of JavaScript . 14
4.2 Web component model . . . . . . . . . 16
5.1 ER Diagram of the Web Ap-

plication . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Home Screenshot . . . . . . . . . . . . . . . 21
5.3 Project Detail Screenshot . . . . . . 21
5.4 Liquibase directory from

Team Collab project . . . . . . . . . . . 22

viii



Chapter 1
Introduction

1.1 Motivation
As part of the academic life of students, there are a variety of collaborative projects
to join; like group projects, club events, and large-scale real-time projects, allowing
students to experience and acquire knowledge during their studies. Although these
opportunities bring plentiful benefits, they are seldom taken advantage of, as few people
are aware of them, and no platform provides students with a way to locate these group
activities.

This thesis aims to create a web application that provides students with a place to
find team members for group work specified in their course work. Having this type of
setting would bolster extracurricular activities, such as student organisations, charity
work, or even internships. By utilising the application, students can form project teams
and meet new people from different backgrounds, potentially leading to valuable, long-
term contacts in their field.

1.2 Application Description
In the application Team Collab, the student creates a project that they want to work on
and therefore must find team collaborators. Each project will have its description and
specifications about which and how many collaborators the project creator is seeking.
Simultaneously, the project is assigned to the category during its creation, enabling
others to find the project they want to work on more quickly.

1



Chapter 2
State of the Art

Collaborative group work is a method of learning in which students work together
to achieve a common goal. Such team projects encourage group discussions, which
helps students learn and analyse the materials more efficiently [1]. Students get to bond
with their peers during group activities. Based on National Survey of Student En-
gagement positive group experiences appear to enhance student learning, retention,
and overall university success [2], [3].

Although group projects bring various benefits, it is demanding to work on one.
It often becomes uncertain who handles what unless group roles are determined, as
well as lack of ongoing discussion on progress can put the team workflow in a stale-
mate [1]. An innumerate amount of students see themselves when they end up doing
most of the work instead of relying on their other teammates.

There are various accessible tools that can assist students in mitigating challenges
related to poor collaboration within team projects. For example, word editors that
facilitate simultaneous editing offer a solution; however, there is presently no specialised
software specifically designed for team formation and creation.

The responsibility of forming teams falls upon individual instructors or students
themselves. However, students are frequently unfamiliar with their classmates, which
causes resorting to a combination of online discussions, social media platforms, or re-
lying on their existing circle of friends to assemble a team. Finding a suitable group
takes several days to finalise. While some students actively seek potential teammates,
others leave it to chance, resulting in a hit-or-miss outcome.

Some would suggest that the students who did not take the initiative reap what they
sow, hence they have to handle its consequences, but this problem involves not only
one person but the whole team.

2.0.1 Target Personas

A target persona is a detailed profile of somebody who represents the target market.
This persona is fictitious and will be henceforth used as a tool to help acquire a better
understanding of the struggling students during teammate seeking period.

To start with, there are two types of students as shown in Figure 2.1–Emily is a well-
spoken individual that prefers taking the reign, and Ivan is a silent type that takes
the passive role and goes with the flow. Both of them are students in their second
year at Czech Technical University and the instructor in one of their classes has just
announced that they will work the entire semester in a group of five. They must submit
their team members next week at the latest.

Emily had an unpleasant experience with group projects last year. She did not work
well with her previous teammates, as they were all struggling with the assignment.
There was also an issue with the teammate who, unlike her, did everything at the last
second. But besides her former teammates, she does not know anybody else in the class.
Emily is not optimistic about working with the same people, so she prefers to assemble

2



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 2.1. Persona cards of Emily and Ivan.

a new team of people this time, but everybody has made a circle of friends/acquain-
tances that are difficult to break into. She also does not want to offend her previous
teammates by rejecting their offer of teaming up together once again. Therefore, Emily
instead resorts to contacting two people through a Facebook messaging app. The first
classmate replied that their team was already full, and the latter was still hesitating on
what to do about this group project, but will work with Emily and help her find more
members.

Ivan is socially awkward and does not have the courage to come up and ask his
classmates in person. He plans to just see who else does not have a group like him
and join them instead, and in worst case scenario, ask his instructor for help.

As no system would help students like Emily and Ivan form a new team for group
projects, they will have to brace themselves and speak up to their other classmates, ask
to join the people they already know, or just leave everything to the chance.

2.0.2 Alternative Methods and Possible Competition
Based on Emily’s situation, one of her choices was to face her old teammates, reject
their offer, and then ask other people in the class. This is a strategy where she would
talk with people face-to-face and use her social skills to resolve the problem.

If talking in person was not an option, she would then try doing it online by find-
ing other people’s contacts and handling the situation through social media platforms
and messaging applications available at her disposal. Given that their major or class
had a social group on social media, both of them could have made a post visible to all
its members proposing a team to join or teammates to join them.

With the stated solutions in mind, the web application Team Collab is considered
a niche market, as there is no direct competition. Alternative methods can replace
it and social media and messaging apps can be considered its only indirect competition.

3



Chapter 3
State To Be

The project aims to develop a web application for creating and managing school team
projects. The aspiration is to simplify and accelerate the search for team members.

Students can easily create a new team, and add a category, description, and wanted
positions. Others can then quickly find a team by name or category and request to be
added to the team.

Team Collab web application aspires to provide students with an environment where
they can quickly and easily find collaborators in group projects (school, extracurricular,
etc.) and other group activities during their academic life. Therefore, it is also suitable
for school organisations to make use of the application to recruit members in respective
clubs and classes.

3.1 User Roles
The system user roles are as follows:

. Guest user. Common user. Project member. Project owner. Administrator

Guest user is a non-logged-in visitor who can only register a new account or log
in with an existing account.

Common user is an authenticated user, therefore, has access to web application
and can browse through lists of projects.

Project member is an authenticated user belonging to a project and can view its
members.

Project owner of the project can handle and change its applicants.
Administrator has full access to the functionality of the application and subsequently

has all the rights of the other users.

3.2 Requirements
In the web application, the common user creates a project that they would like to work
on and needs to find collaborators in the team. Each project will have its description
and specifications of which and how many collaborators the project owner is seeking.
The project is assigned to the appropriate category during its creation, which will allow
others to find the project they want to work on faster. The common user is now
the project owner of the project they just created.

4



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Use Cases

If any other common user would like to join in the previously mentioned project, it is
required for them to request permission from the project owner first. The common user
will have to apply by sending their join request to the project and the project owner
can either accept or reject it. The common user can only become an official project
member when the project owner approves their request to join.

3.2.1 Functional Requirement

FR01 — The system must allow unregistered visitors to create a new account.
FR02 — The system must allow the user to authenticate with their created account.
FR03 — The system must allow the user to view the list of all projects.
FR04 — The system provides the user tools to search and filter the list of all projects.
FR05 — The system must allow the user to send a join request to the projects.
FR06 — The system must allow the user to view all the projects they are in.
FR07 — The system must allow the user to view all join requests sent by the user.
FR08 — The system must allow the user to view all projects owned by the user.
FR09 — The system must allow the project owner to view all the join requests belonging
to the project.
FR10 — The system must allow the project owner to either accept or reject a project
join request.
FR11 — The system must allow the project owner to modify the project.
FR12 — The system must allow the project member to view other members
in the project.

3.2.2 Non-Functional Requirement

NFR01 — The GUI of the web application must be user-friendly.
NFR02 — The web application must be optimized for the latest version of most used
web browsers like Google Chrome, Safari, Microsoft Edge and Mozilla Firefox.
NFR03 — The server must not return a restricted web page to a user who is not
authorized to access it.
NFR04 — The web application should perform accordingly well even with a base count
of around 30 users.

3.3 Use Cases

Each user role mentioned in section 3.1 serves as an actor in the use-case diagram illus-
trated in Figure 3.1 which also contains use-cases derived from functional requirements
in section 3.2.1

5



3. State To Be . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 3.1. Use cases diagram of the web application.

6



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Use Cases

. UC01 — Sign in

After the guest user presses the sign-in button from the landing page, the guest
user will be redirected to a sign-in screen, where they can access the web application
after authenticating themselves.. UC02 — Sign up

If the guest user does not have an account they can create a new account by pressing
a sign-up button located on the landing page, or by pressing the same button but on
the sign-in screen, both of these buttons will take the guest user to the sign-up screen.
After successfully creating a new account they will be redirected to the sign-in page.. UC03 — Create project

The common user can create a new project page by tapping on the button New
project on the user’s My projects. The common user will be redirected to a page
where they have to fill in the required information and it then creates the project
detail page.. UC04 — View projects

The common user can view all the projects in the main Home page of the web
application. Each project item in the list will have its category icon, title, the current
and maximum number of members in the project, tags of positions they are currently
seeking and a short preview of the project description.. UC05 — Sort projects

The common user can sort the list of projects on the main Home page by
newest/oldest addition, lowest/highest number of current members, and low-
est/highest maximum limit of members able to join the project.. UC06 — Filter projects

The common user can filter out the list of projects based on their category, which
school subjects they belong to or what positions are they currently seeking.. UC07 — View project detail

By pressing on one of the projects from the list on the main page, the common
user will be viewing the chosen project in greater detail. The Project detail page
displays the name of the project owner, the date when it was created, the full project
description and a list of its wanted positions.. UC08 — Send join request

The join request button is located on each page of the project detail and the com-
mon user can request to join the project by filling out the join request form.. UC09 — Cancel join request

The common user can cancel their join request at any time on the Project detail
page by pressing the cancel request button.. UC10 — View member project detail

The project members can view all the projects they belong to as a member.. UC11 — View project members

The project members can view the list of members the project has on its Project
detail page.

7



3. State To Be . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. UC12 — Leave project

The project members can leave by pressing the leave project button on the Project
detail page.

. UC13 — View owner project detail

The project owners can view all the projects they belong to as an owner.

. UC14 — View join requests

The project owner can view the project’s list of incoming requests to join on
the Project detail page of the project they are the owner of.

. UC15 — Manage join requests

The project owner can handle all incoming requests to join on the Project detail
page of the project they are the owner of.

. UC16 — Accept join request

The project owner can accept a request to join the project and the applicant will
become a project member by doing so.

. UC17 — Reject join request

The project owner can decline an applicant’s request to join the project. The ap-
plicant cannot apply again unless the project owner removes them from the list
of rejected requests.

. UC18 — Manage project

The project owners can manage all the projects they belong to as an owner.

. UC19 — Delete project

The project owner can delete the entire project by pressing the delete project
button on the Project detail page.

. UC20 — Edit project

The project owner can edit the project information by pressing the edit project
button on the Project detail page.. UC21 — Kick member

The project owner can remove a member from the project.

. UC22 — Transfer ownership

The project owner can transfer their position as the project owner to any
of the project members.

The now defined functionality requirements and use cases, gives a clearer understand-
ing of what can Team Collab provide to its users.

8



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 Web Application Design

3.4 Web Application Design
Personas, sitemaps, and prototypes, among other tools, facilitate the effective documen-
tation and communication of concepts. In the application designing process, this set
of deliverables serves as an instrumental tool to document the design choices made [4].

Previous chapter 2.0.1 modelled the target audience using personas and scenarios.
Based on the observation of the potential user base, it has been concluded that the main
target will be young adults with an age ranging from 18 to 26 who are still involved
in the school environment.

The thoroughly done analysis will now prove to be useful and in shaping the design
of the web application’s UI/UX elements.

3.4.1 UX Design

A comprehensive designing process includes working on its application prototyping. It is
essential to determine which kind of screens are needed to provide a visual representa-
tion of its purpose. Which for instance can be achieved with the help of user stories.
Defining such key screens is a first step whereas filling them with UI components is
what comes after.

Deriving from section 3.3 the foundational user stories could be as follows:

. TASK-1 — Sign Up and First Time Experience of Creating a Project. TASK-2 — Send Join Request and Join Project. TASK-3 — Accept an Applicant

To progress further within the web application, user login is a prerequisite based
on the previously discussed user roles in chapter 3.1. As a result, a landing page
becomes essential to provide incoming visitors with pertinent information, including
instructions about the web application’s functionality, and to prompt them to either
sign in or register a new account. Once authenticated, users gain access to the main
home page, which presents a comprehensive list of all projects.

. TASK-1 — Sign Up and First Time Experience of Creating a Project

Sign Up: User signs up, setting email and password.

First Project: User’s task is to make their first project right after signing up.

Given that the procedure went through a happy path1, resulting key screens that
will be needed in accomplishing this task are outlined below.

Key Screens: Unregistered starting page, Sign Up Screens, Sign Up Confirmation,
Sign In Screen, Create Project

The remaining two tasks include more complex states and require engagement of more
than just one user. Figure 3.2 depicts how the state of a request to join a project can
change and its transitions.

1 “...sequences of activities that will be executed if everything goes as expected without exceptions” [5]

9



3. State To Be . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 3.2. State diagram of a Join request.

In consideration of join request states, TASK-2 and TASK-3 can be described
in the following manner (for text clarity, the task of signing in has been omitted):

. TASK-2 — Send Join Request and Join Project

Send Join Request: User’s task is to find a project and send in a join request.

Join Project: User’s task is to wait to be accepted in the project by the project’s
creator.

Key Screens: Projects Screen, Project Detail Screen, Join Request Screen, Join
Request Confirmation, Join Request Status

. TASK-3 — Accept an Applicant

Accept Join Request: User’s task is to open one of projects they created and accept
a pending join request.

Key Screens: My Projects Screen, Project Detail Screen, Join Requests Screen,
Accept Join Request Screen

The listed items are only a selection from a broader range of tasks that could be done
in the application, but there is no need to go through every single one of them. They
merely serve as a guide in the thought process of modelling the screens.

“A sitemap is a visual representation of a site’s structure. Usually arranged hierarchi-
cally, sitemaps indicate how content and information are organized and, consequently,
how users will navigate the system. A sitemap documents the system as a whole, pulling
back from interface specifics to look from a broader vantage point.” [4]

The three tasks’ analysis now creates a foundation of key screens that can be assem-
bled together in a sitemap 3.3. Additionally, it has been enriched with more screens on
account of the characteristic of a web application.

10



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 Web Application Design

Figure 3.3. Sitemap navigation between screens.

3.4.2 UI Design

“True beauty is the combination of the physical form and desired function operating
together in harmony. In digital design, it is not enough that each pixel is perfect
but it also must add usefulness, understanding, or delight and often a combination
of all three.” [6]

The visual appeal of a website plays a crucial role in attracting users and determining
their engagement. It significantly influences whether a user chooses to stay or leave.
Furthermore, a well-structured website facilitates easier navigation for users. Visitors
have specific expectations regarding the placement of various elements on a site, and en-
suring proper placement enables efficient searching and faster information retrieval.

Considering that students comprise the primary target audience, the design of the ap-
plication will prioritise a minimalist look and efficient features. Students are tech-savvy,
therefore emphasis will be placed on efficacy rather than displaying detailed explana-
tions for every feature on the screen.

Creating a visually captivating interface that aligns with their age will enhance en-
gagement among student users. Figure 3.4 offers the creation of the icons and logo,
in addition to choosing the colour palette.

The icons have been created in Adobe Illustrator as a vector graphics which allows
the possibility of exporting them in SVG (Scalable Vector Graphics). This format
exhibit practicality in keeping the UI responsive.

11



3. State To Be . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 3.4. Displaying logo and icons in Adobe Photoshop 2023.

After a detailed analysis of the UX/UI design, the next step is to translate the
concept and ideas into a prototype. To make the implementation easier, a high-fidelity
prototype will serve as its template to follow. A suitable tool for such a task is Figma.

Given the present design of the main projects screen 3.5 and project detail screen 3.6,
excessive deliberation over style choices during the implementation may be unnecessary
or minimal.

Despite the detailed nature of the graphic design, several elements were conveniently
accessible through the selection offered in Figma, allowing for a more efficient workflow
and the possibility of future alterations.

Figure 3.5. High-fidelity prototype of the project browsing page.

12



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 Web Application Design

Figure 3.6. High-fidelity prototype of the project details.

13



Chapter 4
Architecture

With the usage of a client-side three-tier architecture, the application is divided into fol-
lowing parts:

. Presentation tier – web application. Application tier – application server. Data tier – database

4.1 Web Application

4.1.1 Front-end Technologies

Figure 4.1. Frontend frameworks usage data from State of JavaScript [based on ratio:
(would use again + would not use again) / total] [7].

According to data 4.1 from the annual survey on State of JavaScript 2022 1 the top
three most used front-end frameworks are React, Vue.js and Angluar.

React is currently the most popular JavaScript library and with its large-scale user
community there is not a lack of online resources to study. When it comes to its
learning curve, it is relatively manageable for individuals who possess a foundational
understanding of HTML and JavaScript [8].

1 https://2022.stateofjs.com/en-US/libraries/front-end-frameworks/

14

https://2022.stateofjs.com/en-US/libraries/front-end-frameworks/


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1 Web Application

When examining the second contender, VueJS, it presents a comparatively shorter
learning period in comparison to React, yet it fails to match React’s significantly more
robust ecosystem. Unlike React and Angular, VueJS lacks the endorsement of promi-
nent corporations such as Facebook and Google. It relies on community-driven support,
which can be regarded as both advantageous and disadvantageous [8].

Angluar, conversely, demands a more comprehensive understanding of TypeScript
and is the hardest to learn. As previously stated, its association with Google ensures
the longevity of its applications through ongoing maintenance [8].

4.1.2 Overall Thoughts on Frameworks and Libraries

Over the years, there have been significant advances in the idea of autonomously ex-
tending the capabilities of HTML in order to create advanced UI elements. This has
resulted in the introduction of nowadays highly popular libraries such as jQuery UI,
React, Angular, Vue, and others. All of these libraries provide methods for creating UI
elements that adhere to the component model. Each of these libraries introduces its
approach to creating UI components, as well as attempts with mapping UI elements
to markup in its own fashion [9].

It is undeniable that it makes the development of client-side application much easier.
Many companies have moved from merely using JavaScript and jQuery to developing
applications in such frameworks. Because of that, the skills of programming in frame-
works like React, VueJS and Angluar are highly sought for.

The author themselves had learnt programming in React and VueJS and this project
has already been attempted and trialed in 2021 with React and bootstrapped with Cre-
ate React App2.

The project implemented Tailwind CSS version 2.0 as its CSS framework in 2021.
However, a subsequent release of version 3.0 in December of the same year brought
unforeseen modifications that caught the author off guard. The extent of these changes
proved to be more significant than expected, resulting in a disruption of the applica-
tion’s functionality. Upgrading the application to version 3.0 will require a substantial
investment of time and effort.

This situation stands as evidence of the demanding nature of keeping up with
and maintaining up-to-date technologies when relying on libraries and frameworks.
Consequently, it has brought the author’s attention to a technology known as web
components.

4.1.3 Web Components

Web components possess cross-browser compatibility since they are built using HTML,
CSS, and JavaScript, rendering them platform-independent [10]. Creation of cus-
tom elements by merely extending existing HTML elements without the need for any
JavaScript library or framework [9]. Moreover, web components demonstrate significant
characteristics, such as the ability to be reused, maintained, and encapsulated [10].

2 https://github.com/facebook/create-react-app

15

https://github.com/facebook/create-react-app


4. Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Web component development consists of three main building blocks illustrated in Fig-

ure 4.2 that enables it to be reusable across platforms. Some sources would also mention
about the HTML Imports, but they are deprecated as they are not standard [11]. The
HTML element possesses the characteristic of being able to contain HTML snippets
without the need for immediate rendering.

Custom elements refer to a collection of JavaScript APIs for creating custom DOM
elements associated with specific HTML tags. This shadow DOM is a set JavaScript
APIs that enables the encapsulation of the web components. Encapsulated object is
protected from end users interacting with it in ways it was not intended [11]. When
the component is appended to the DOM, its shadow DOM becomes connected to the
global DOM while maintaining its privacy [9].

Figure 4.2. Web component model [10]. (Re-created in Balsamiq Wireframes)

4.2 Application Server

4.2.1 Jakarta EE 8

Jakarta EE 8 (previously also known as The Java Platform, Enterprise Edition, Java
EE) is a collection of API specifications designed to work together when developing
server-side enterprise Java applications. There are numerous Jakarta EE implementa-
tions and since code created under the Java EE specification may be deployed to any
Java EE-compliant application server with little to no modifications prevents vendor
lock-in [12].

4.2.2 Payara Server

Application servers, such as JBoss, Websphere, Weblogic, and GlassFish, are where
Java EE applications are commonly deployed. Every application server is viewed as
a different Java EE implementation. The author has decided to integrate an existing
implementation, which is the open-source application server Payara 5 that supports
Jakarta EE 8, instead of creating one from the scratch [12].

16



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3 Database

4.3 Database
The open-source relational database PostgreSQL is used as a primary database for
many web applications. It is proved to be the most reliable option as the author has
the most experience with it compared to other technologies. Jakarta EE also provides
a robust integration with SQL via JPA.

17



Chapter 5
Implementation

The application’s primary implementation details are covered in this chapter. Start-
ing with the implementation and functionality of the back-end side, then proceeding
to the realisation of the front-end.

5.1 Data Model

The data model of the web application is depicted in the Figure 5.1.

Figure 5.1. ER Diagram of the web application.

18



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 Security

5.2 Security
Security of the web application is primarily handled by the Jakarta EE 8 Security API.

“It includes an HTTP authentication mechanism and an identity store abstraction for
validating user credentials and group memberships, and also provides a security-context
API to programmatically handle security.” [13]

One or more users, roles, and permissions are managed by a realm. A user logs
in and is a member of a realm. Realms are separate from one another and are limited
in their ability to administer and authenticate people. In our case, the JDBC Security
Realm has access to the database through the Payara data source, which is in line
with how realms typically relate to data sources [14].

The creation of the JDBC Security Realm also includes the configuration of password
hashing.

5.3 REST API
“An API, or application programming interface, is a set of rules that define how ap-
plications or devices can connect to and communicate with each other. A REST API
is an API that conforms to the design principles of the REST, or representational
state transfer architectural style. For this reason, REST APIs are sometimes referred
to RESTful APIs.” [15]

The client communicates with the server through the RESTful API and utilizes
HTTP requests to access and retrieve data. When a third party communicates
with an application interface, it makes calls to special endpoints that are identified
by a service or server’s URL. So for instance a GET request for retrieving all project
would be as follows:

/api/projects/all:
get:

operationId: getProjects
responses:

default:
content:

application/json:
schema:

type: array
items:

$ref: '#/components/schemas/ProjectOverviewDto'
description: Default Response.

Table 5.1. Code extract: GET request for retrieving all project (extracted from local-
host:4848/openapi)

Following that, an appropriate class and functions are in charge of handling
the requests–interpreting the requests, getting the entities ready, and providing
responses.

A Data Transfer Object (DTO) is used to pass the data. This enables the cre-
ation of many representations of the same data that is adjusted to the requirements
of the client. These classes transfer only the necessary attributes and intricate
dependencies are intentionally omitted. For example, the client does not need

19



5. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
the whole project with all its attributes and information, therefore a shorter overview
of the Project is enough. A DTO of such object would look like this:

ProjectOverviewDto:
type: object
properties:

projectId:
type: integer

projectCreator:
type: string

name:
type: string

description:
type: string

dateTimeCreated:
type: object

category:
$ref: '#/components/schemas/CategoryDto'

positionsWanted:
type: array
items:

$ref: '#/components/schemas/PositionsWantedDto'
maxMembers:

type: integer
memberCount:

type: integer

Table 5.2. Code extract: DTO of Project (extracted from localhost:4848/openapi).

5.4 Front-End
The front-end side of the application is fully implemented in plain JavaScript by using
the technology of the Web Components. They enable the reuse of smaller functional
units in other areas of the same application. Thus, each HTML page has its JavaScript
file that would build the needed UI components accordingly. Components are created
by extending the HTMLElement class and defined with customElements in code 5.3.

class ProjectItem extends HTMLElement {
...
}

customElements.define('c-project-item', ProjectItem)

Table 5.3. Code extract: Creation of ⟨c-project-item⟩ element
Figure 5.2 is a screenshot of the main Home page of the web application. This

page serves as a project browser. It fetches ProjectOverviewDTO and creates a com-
ponent ⟨c-project-item⟩⟨/c-project-item⟩ for each project it gets. The received data is
subsequently passed by setting the property of the Web Component c-project-item
with the data.

20



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4 Front-End

Figure 5.2. Screenshot of the Home page.

Figure 5.3. Screenshot of the Project detail page from the view of a non-member user.

With the creation of individual custom elements, a different view can be displayed
based on its specified condition. For example, a user has different views based on
their relation to the project. A user that does not belong to the project would view
the Project detail page as shown in Figure 5.3, but if they were a member of the project,
they would be able to see different information and functionalities.

21



5. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.5 Liquibase
Liquibase helps in tracking, versioning, and deploying database code [16].

“Liquibase All database changes are specified in the Liquibase changelog file. A change
is contained in a changeset and changesets are added to the changelog in the order they
need to be deployed.” [16]

Figure 5.4. Liquibase directory from Team Collab project

With Liquibase, there is no need to worry about the changes made to the database,
as a changelog file is created to track each change. These changelogs are referenced
in the root file called changelog-master.xml (as shown in Figure 5.4), and they are
available in various formats, including XML. The changelog-00001 file creates the
database tables, while the changelog-00002 file populates them with the necessary
data for the application to operate as intended.

22



Chapter 6
Testing

The front-end of the Team Collab posed significant challenges due to the utilization of
unfamiliar web component technology. Several setbacks were encountered during the
implementation process.

The process of determining the logic and deciding on data flow between parent and
child components proved to be tedious, particularly without the aid of any libraries.

Careful attention had to be given to the rendering of HTML elements on the page, as
web components utilise the shadow DOM. Due to their placement in a separate DOM,
components remained hidden and needed careful handling.

Complications may arise when using the Fetch API for data retrieval through the
await Promise, such as when attempting to attach an event listener to an element that
is not yet present. Debugging such issues can be extremely time-consuming.

Since web component technology is a fundamental aspect of this project, it is imper-
ative to conduct thorough testing of its components. GUI testing emerges as a suitable
approach for this purpose, and options such as Selenium and Playwright are to be
considered.

Both Playwright and Selenium provide compatibility with a range of web browsers
and programming languages. They facilitate the simulation of user interactions involv-
ing mouse and keyboard movements. Therefore, the selection of a testing tool becomes
a subjective decision, as their functionalities are comparable.

The author has implemented GUI testing of the web application using Playwright.

6.1 Playwright Testing
Playwright is a testing framework that supports web browsers like Firefox, Chromium
and Webkit. Its API is available in .NET, JavaScript, TypeScript, Python and Java.

This project will primarily focus on creating GUI tests in Playwright Java since
it is distributed as a maven module and merely needs a dependency to be added to
the pom.xml file. It also enables running with test-runners like JUnit in the following
manner:

public class ProjectCreationTest {

static Playwright playwright;
static Browser browser;

BrowserContext context;
Page page;

@BeforeAll
static void launchBrowser() {

playwright = Playwright.create();

23



6. Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
browser = playwright.chromium().
launch(new BrowserType.LaunchOptions().setHeadless(false));

}

@AfterAll
static void closeBrowser() {

playwright.close();
}

@BeforeEach
void createContextAndPage() {

context = browser.newContext(new Browser.NewContextOptions().
setStorageStatePath(Paths.get("appLoginInfo.json")));
page = context.newPage();

}

@AfterEach
void closeContext() {

context.close();
}

@Test
public void CreateProjectTest() {
...
}

}

Table 6.1. Code extract: Running Playwright with Junit
In the test setup, Playwright and the Browser are initialized in the @BeforeAll

method and subsequently terminated in the @AfterAll method. As a result, the test
methods will share the same Browser instance while each test will have its own Browser-
Context and Page [17].

6.2 Testing Scenarios
In chapter 3.4.1 there are three main tasks that can be done in Team Collab. And
the testing scenarios for those user stories are similarly planned in following tables 6.2,
6.4, 6.3.

During the testing of test scenario 6.2, the following bugs were identified: the Login
screen failed to redirect successfully authenticated users to the Projects screen. This
bug has been resolved. The issue originated with the j_security_check mechanism,
which redirected users to the web application’s root instead of the intended page. It
was observed during testing that the handling of unsuccessful login attempts is not
functioning properly and requires further attention.

24



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2 Testing Scenarios

Name: User registration and login

Actor(s) Guest user
1. Guest user clicks Register button
2. Guest user fills in the form on the Register page
3. Guest user clicks OK to confirm registration
4. Guest user fills in login details
5. Guest user clicks Sign in button

Expected
results: Guest user creates a profile and can log in.

Table 6.2. Test scenario for User registration and login

Name: Project creation

Actor(s) Common user
1. Common user clicks New project button
2. Common user clicks fills the form
3. Common user clicks Publish project button

Expected New project item in My projects page
results: and Common user has become Project Owner of the project

Table 6.3. Test scenario of creating a project

Name: Sending and evaluating a join request

Actor(s) Common user, Project owner
1. Common user A becomes the Project owner
2. Common user B clicks Request to~join button
3. Common user B fills a Message in request
4. Common user B clicks Send request button
5. Project owner clicks View requests button
6. Project owner clicks button:

a) Accept
— Common user B becomes Project member
b) Reject
— Common user B sees the request as declined

Expected Project owner approves or declines the user
results: and it is saved accordingly in the project.

Table 6.4. Test scenario for sending and evaluating a join request

Test scenario 6.3 faced some issues during its testing. It raised many questions as
the manual user testing worked, but the Playwright tests kept failing. To identify
the problem, the tracing feature that Playwright provides was used to troubleshoot.
It was observed that during the test assertion method; the components were not
yet rendered, therefore the tests kept failing. This issue was resolved by adding
page.waitForLoadState(LoadState.NETWORKIDLE) before checking the results. The
same issue was identified in 6.4 otherwise both testing scenarios successfully passed.

25



Chapter 7
Conclusion

The primary goal of the project was to create a tool that can help alleviate the problems
students come across when they look for teams to join. Searching for teammates can be
a difficult task when the student is in an unfamiliar environment. Team Collab intends
to make this process easier by providing a space where they can easily find the right
projects for them. The purpose of this application is to help the students progress in
their academic and professional careers.

After the analysis of the current state of the problem, the future state of the web
application has been proposed and broken down in more detail. By establishing user
roles, requirements, and use cases and emphasising UX and UI design, the envisioned
state of the project was clearly defined.

Subsequently, the back-end of the application was made using Jakarta EE 8 and Pa-
yara Server, and the most challenging technology used in the project was creating
the user interface with only plain JavaScript using Web Components. The author
has struggled the most with data passing between the components. One of the most
time-consuming activities during the implementation was sorting the order of creating
and using components since many of them were inside each other. Finally, the web
application underwent testing scenarios and GUI testing using Playwright.

Despite the laborious work involved with web components as a stand-alone technol-
ogy, it presents an opportunity to work with other libraries and frameworks thanks to
its reusability and being based on existing web standards.

During the initial stages of project analysis, the product features and its high-fidelity
prototype were showcased and demonstrated to a group of 30 international students at
the University of Seoul. Team Collab received a positive response from these students,
with many expressing their enthusiasm for the prototype and saying that it would
significantly make group projects much easier. Even though the sample of research
is not representative of large-scale projects, the positive feedback from target audience
proves this project has potential for further development.

7.1 Future Work
The tool could be further improved by incorporating an ontology-based approach where
the searched keyword would show results based on its keyword and semantic relation
[18].

Finding a suitable project is crucial to achieving the best results. Implementing
a search engine and filtration system means the user can efficiently seek available
projects. Creating a full-text search that matches a phrase against all the words
in the database facilitates the overall work of result browsing [19].

Furthermore, the research proposes the possible integration of additional communi-
cation functionalities, such as the attachment of document files or the inclusion of voice
messages in requests to join.

26



References

[1] Rebecca Jackson. Why group projects fail. 2015.
https://www.psychologytoday.com/us/blog/school-thought/201503/why-
group-projects-fail.

[2] Carnegie Mellon University. What are the benefits of group work? - eberly center
- carnegie Mellon University.
https://www.cmu.edu/teaching/designteach/design/instructionalstrate
gies/groupprojects/benefits.html.

[3] Megan Lutz, and Steven Culver. The National Survey of Student Engagement:
A university‐level analysis. Tertiary Education and Management. 2010, 16 35-44.
DOI 10.1080/13583881003629814.

[4] Cennydd Bowles, and James Box. Undercover user experience design: Learn how
Todo great ux work with tiny budgets, no time, and limited support. New Riders,
2011.

[5] PWL Bollen, and others. BPMN: a meta model for the happy path. Citeseer, 2010.
[6] Jenifer Tidwell, Charles Brewer, and Aynne Valencia. Designing Interfaces. 3 ed..

Sebastopol, CA: O’Reilly Media, 2020.
[7] Sacha Greif, and Eric Burel. State of JavaScript 2022. 2023.

https://2022.stateofjs.com/en-US/libraries/front-end-frameworks/.
[8] Mohit Joshi. Angular vs react vs Vue: Core differences. 2022.

https://www.browserstack.com/guide/angular-vs-react-vs-vue.
[9] A. Chiarelli. Exploring Web Components: Build Reusable UI Web Components

with Standard Technologies. BPB PUBN, 2020. ISBN 9789389423976.
[10] Sandeep Kumar Patel. Learning web component development. Birmingham, Eng-

land: Packt Publishing, 2015.
[11] Ben Farrell. Web Components in Action. New York, NY: Manning Publications,

2021.
[12] David Heffelfinger. Java EE 8 Application Development. Birmingham, England:

2018 . ISBN 9781788297332.
[13] P Spath. Beginning Jakarta EE : Enterprise Edition for Java: from Novice to

Professional, Apress L. Berkeley, CA. Ebook Central: Apress L. P, 2019.
[14] A. Tijms, T. Bais, and W. Keil. The Definitive Guide to Security in Jakarta EE:

Securing Java-based Enterprise Applications with Jakarta Security, Authorization,
Authentication and More. Apress, 2022. ISBN 9781484279441.

[15] What is a rest api?
https://www.ibm.com/topics/rest-apis.

[16] Kchappell. Getting started: Liquibase best practices. 2022.
https://www.liquibase.org/get-started/best-practices.

27

https://www.psychologytoday.com/us/blog/school-thought/201503/why-group-projects-fail
https://www.psychologytoday.com/us/blog/school-thought/201503/why-group-projects-fail
https://www.cmu.edu/teaching/designteach/design/instructionalstrategies/groupprojects/benefits.html
https://www.cmu.edu/teaching/designteach/design/instructionalstrategies/groupprojects/benefits.html
http://dx.doi.org/10.1080/13583881003629814
https://2022.stateofjs.com/en-US/libraries/front-end-frameworks/
https://www.browserstack.com/guide/angular-vs-react-vs-vue
https://www.ibm.com/topics/rest-apis
https://www.liquibase.org/get-started/best-practices


References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[17] Test Runners.

https://playwright.dev/java/docs/test-runners.
[18] Yu Hou, and Lixin Tao. An Ontology-based Ranking Model in Search Engines.

Journal of Computer Science Research. 2019, 1 DOI 10.30564/jcsr.v1i2.972.
[19] Co Je to Fulltext / Fulltextové vyhledávání? � Definice Pojmu. 2022.

https://topranker.cz/slovnik/fulltext-fulltextove-vyhledavani/.

28

https://playwright.dev/java/docs/test-runners
http://dx.doi.org/10.30564/jcsr.v1i2.972
https://topranker.cz/slovnik/fulltext-fulltextove-vyhledavani/


Appendix A
Acronyms

HTML Hypertext Markup Language
CSS Cascading Style Sheets

XML Extensible Markup Language
DOM Document Object Model

GUI Graphical User Interface
UI User Interface

UX User Experience
JPA Java Persistence API

DTO Data Transfer Object
API Application Programming Interface
SVG Scalable Vector Graphics

29


	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Tables/Figures
	Introduction
	Motivation
	Application Description

	State of the Art
	Target Personas
	Alternative Methods and Possible Competition
	State To Be
	User Roles
	Requirements
	Functional Requirement
	Non-Functional Requirement

	Use Cases
	Web Application Design
	UX Design
	UI Design


	Architecture
	Web Application
	Front-end Technologies
	Overall Thoughts on Frameworks and Libraries
	Web Components

	Application Server
	Jakarta EE 8
	Payara Server

	Database

	Implementation
	Data Model
	Security
	REST API
	Front-End
	Liquibase

	Testing
	Playwright Testing
	Testing Scenarios

	Conclusion
	Future Work

	References
	Acronyms

